

Zheng Jiang

Shanghai Synchrotron Radiation Facility (SSRF) Shanghai Advanced Research Institute, CAS Shanghai Institute of Applied Physics, CAS

Sept 20, 2022

圈科学院上海高等研究院

酒同节

Shanghai Synchrotron Radiation Facility

We will actively participate in the construction of Zhangjiang comprehensive National Science Center, join the international club.

X-ray Spectroscopy Platforms in SSRF

- BL14W1-XAFS beamline
- D-line/E-line/RMB/Hard X-ray Spectroscopy beamline
- **X-ray Spectroscopy Platforms in SHINE**
- Application of X-ray Spectroscopy in Catalysis

SSRF Beamlines layout

上海同步輻射光源

Shanghai Synchrotron Radiation Facility

X-ray Spectroscopy Platforms at SSRF

Timeline of construction

上海同步輻射光源 Shanghai Synchrotron Radiation Facility

Spectroscopy Methods in BL14W1

上海同步輻射光源 Shanghai Synchrotron Radiation Facility Users' Research Achievement of BL14W1

Chemistry (catalysis) has always been the field with the largest demand and highest quality output.

上海同步辐射光源 Shanghai Synchrotron Radiation Facility

Hard X-ray Spectroscopy Beamline

XAS signal

Design and Layout of D-line

IR station

IR

ED-XAS & IR

Energy range	5~25 keV; 100~1000 cm ⁻¹	
Spot size	$20 \times 20 \ \mu m^2$; $100 \times 100 \ \mu m^2 @ 1000 \ cm^{-1}$	X-Ray Infrared microscopy system In situ cell
Photon flux	3.8×10 ¹² phs/s·300eV BW@7keV; 10 ¹³ phs/s·0.1%BW@4200 cm	
Energy resolution	2×10^{-4} @Cu K-edge; 16cm ⁻¹	Motor
Time resolution	~10 ms(FTIR), ~60 µs(ED-XAS)	
In situ cell temperature	RT~600K	
Synchrotron radiation Compared and a second		BM 9433.28 IR stati IR station (10~10000 •IR Spectroscopy •IR Microspectroscopy •Nano- FTIR

Science Object of E-line

Focusing on surface interface chemistry, electrochemistry, self-assembly, and photoelectric conversion, etc.

Electronic structure

- Occupied state
- Unoccupied state

Spatial dimention

- Surface and interface
- Bulk

Operando measurement

- Temperature and pressure
- Electronic/magnetic field

• Measurement methods: XAS, XES, XRS, APPES, RXES, REXS

Understanding the reaction mehanism
Regulating the reaction performance

Design and Layout of E-line

上海同告鹩

Shanghai Synchrotron Radiation Facility

射光源

Radioactive Materials Beamline (RMB)

Outline

X-ray Spectroscopy Platforms in SSRF

- BL14W1-XAFS beamline
- D-line/E-line/RMB/Hard X-ray Spectroscopy beamline
- X-ray Spectroscopy Platforms in SHINE
- Application of X-ray Spectroscopy in Catalysis

10 End-Stations @ SHINE Facility

FEL-I Hard X-ray End-stations

- HSS: Hard X-ray Scattering and Spectroscopy
- **CDS:** Coherent Diffraction Endstation for Single Molecules and Particles
- SEL: Station of Extreme Light
- > XFEL + 100 PW Laser System

FEL-II Soft X-ray End-stations

- AMO: Atomic, Molecular, and Optical Science
- SES: Spectrometer for Electronic Structure
- SSS: Soft X-ray Scattering and Spectroscopy

FEL-III Hard X-ray End-stations

- HXS: Hard X-ray Spectroscopy
- SFX: Serial Femtosecond Crystallography
- **CDE:** Coherent Diffraction Imaging
- HED: High Energy Density Science

Tsu-Chien Weng

Measuring the element excitation in quantum associated materials in the case of energy, momentum and time.

Hard X-ray Spectroscopy Endstation

Outline

X-ray Spectroscopy Platforms in SSRF

- BL14W1-XAFS beamline
- D-line/E-line/RMB/Hard X-ray Spectroscopy beamline
- **X-ray Spectroscopy Platforms in SHINE**
- Application of X-ray Spectroscopy in Catalysis

上海同步輻射光源 Shanghai Synchrotron Radiation Facility

Toward Great Strategy Demand

Difference spectra —— surface information

Difference technique $(\Delta \mu)$

Phys. Chem. Chem. Phys., 2010, 12, 5514–5534

上海同步輻射光源 Shanghai Synchrotron Radiation Facility In Situ Spectroscopy Reveals Proton Transfer in EDL

Electrocatalysis:

Solvent effect at the solid-liquid interface

HER @ Sub-Nanometric Platinum

Characterization

PtO_x

Performance > commercial Pt/C

Only 18 mV overpotential at 10 mA/cm² (23mV for commercial Pt/C)

□ high mass activity (19 A/mg Pt vs 1.7 A/mg

Pt of Pt/C at an overpotential of 50 mV)

ACS Appl. Mater. Interfaces 2021, 13, 47252-47261

上海同步輻射光源 Shanghai Synchrotron Radiation Facility

Operando XAFS Reveals Structural Evolution

□ In high potential region, the white-line intensity decreasing→Pt-C/O bond breaking

 \Box In low potential region, the white-line intensity increasing \rightarrow increase in hydrogen coverage on the

Pt surface

Synchrotron Radiation

Structure-performance Relationship

The simultaneous increases in Pt–O (L) radial distance and hydrogen coverage at the SNM-Pt/electrolyte interface are closely correlated, which implies that more flexible interfacial water more efficiently transfers the proton through the EDL interface and leads to a faster reaction rate for HER.

XANES —— spatial configuration

上语同告

Shanghai Synchrotron Radiation Facilit

CO₂ Reduction Reaction (CO₂RR)

Peaking carbon dioxide emissions before 2030Achieving carbon neutrality before 2060

Although the same synthesis method was performed, different atomic structures was obtained. The coordination environment of ZIF-8 Ni SACs has not been determined.

上海同步輻射老旗 Shanghai Synshrotron Radiation Facility

CO₂RR based on Ni SAC

The production of CO became predominant in the range of -0.5 to -0.9 V. The

highest CO Faradaic efficiency of 99% was achieved at a potential of -0.67 V.

ACS Catal. 2022, 12, 14, 8676-8686

上海同步輻射光源 Shanghai Synchrotron Radiation Facility Spectroscopy methods uncover the atomic structure

Energy(eV)

d

R+α(Å) 5

R+α(Å) 8

R+α(Å)

1.

ò

1

1+

Ni foi

2

Ni(OH)

Ni-N-C

上海同步輻射光源 Shanghai Synchrotron Radiation Facility

Operando XAFS analysis

The applied potential induced local structure changes.

XANES simulation

The change of the structure of the active site regulates the electronic state and thus affects **potential-dependent volcanic selectivity changes.**

High energy resolution of XES

High energy-resolution XES

The resolution of X-ray spectroscopy is related to the life broaden of the final state.

Heisenberg uncertainty

$$\Delta E = \hbar/t$$

上海同告輻射光源

Shanghai Synchrotron Radiation Facility

High Energy Resolution X-ray Spectroscopy

Von Hamos spectrometer

Operando XES analysis of Cu₂O/Cu film

It is challenging to gain further information about the structure and chemical state of these thick samples based only on XAFS due to the strong **self-absorption affect**.

Bingbao Mei, Zheng Jiang*, et al. X-Ray Spectrometry. 2019, 49, 251–259 Inc

上海同步輻射光源 Shanghai Synchrotron Radiation Facility

CuPc model catalyst for CO₂RR

- Defined atomic configuration of CuN₄C₈
- Guiding the study of SACs

Journal of Energy Chemistry, 64 (2022) 1–7

Operando XES identified the structural evolution

Gradual strengthen of contour center at 8980 eV as the potential increases indicates the formation of a novel structure.

Peak fitting and LCF determined the component changes

The applied potential directly induced the structural transformation of Cu(II) to Cu(0)

HERFD-XANES $\Delta \mu$ analysis

HERFD-XANES simulation based on $\Delta\mu$

Acknowledgement

BSRF, NSRL, SSRF, SHINE & Beamline scientists: Tsu-Chien Weng, Fei Song, Xiangjun Wei, Jiong Li, Fenggang Bian, Yanqing Wu.

